Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[tetrakis(μ_4 -4,6-dimethyl-5-nitrobenzene-1,3-dicarboxylato- $\kappa^2 O^1: O^1: O^3: O^3'$)bis(pyridine- κN)dizinc]

Qing-Yu Ma,* Rui-Fang Guan and Guo-Zhong Li

School of Materials Science and Engineering, University of Jinan, Jinan 250100, People's Republic of China Correspondence e-mail: mse_maqy@ujn.edu.cn

Received 19 January 2011; accepted 7 April 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; *R* factor = 0.033; *wR* factor = 0.081; data-to-parameter ratio = 16.2.

In the title complex, $[Zn_2(C_{10}H_7NO_6)_2(C_5H_5N)_2]_n$, the repeat unit is a centrosymmetic tetra-carboxylato-*O*, *O*'-bridged dimer in which each Zn^{II} atom is five-coordinated by four O atoms from different dianionic 4,6-dimethyl-5-nitroisophthalate ligands [Zn-O = 2.0283 (18)-2.0540 (19) Å] and one N atom from a pyridine molecule [Zn-N = 2.030 (2) Å]in the axial site of a slightly distorted square-pyramidal coordination sphere. The Zn···Zn separation is 2.9750 (6) Å. The complex dimers are extended into a two-dimensional polymeric structure parallel to (100) through bridges provided by the second carboxylate group of the ligand.

Related literature

For the structure of a similar but discrete tetra-carboxylatobridged Zn_2 dimer, see: Yu *et al.* (2011).

Experimental

Crystal data

 $[Zn(C_{10}H_7NO_6)(C_5H_5N)]$ $M_r = 381.64$ Monoclinic, $P2_1/c$ a = 10.2947 (9) Å b = 11.8526 (10) Å c = 12.8501 (11) Å $\beta = 97.933$ (2)°

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.824, \ T_{\rm max} = 0.879$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.081$ S = 1.033525 reflections $V = 1553.0 \text{ (2) } \text{\AA}^{3}$ Z = 4 Mo K\alpha radiation \mu = 1.62 mm⁻¹ T = 298 K 0.12 \times 0.10 \times 0.08 mm

8899 measured reflections 3525 independent reflections 2750 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.029$

 $\begin{array}{l} 217 \text{ parameters} \\ \text{H-atom parameters constrained} \\ \Delta \rho_{max} = 0.43 \text{ e } \text{\AA}^{-3} \\ \Delta \rho_{min} = -0.43 \text{ e } \text{\AA}^{-3} \end{array}$

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT-Plus* (Bruker, 2007); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Scientific and Technological Project of Shandong Province (2008SGG0809) and Doctoral Foundation of Shandong Province (2009SBS0913).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2089).

References

- Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Yu, Z.-Y., Lin, K.-H., Zhang, F.-F., Shao, M. & Li, M. (2011). Acta Cryst. E67, m206. supplementary materials

Acta Cryst. (2011). E67, m586 [doi:10.1107/S1600536811013092]

Poly[tetrakis(μ_4 -4,6-dimethyl-5-nitrobenzene-1,3-dicarboxylato- $\kappa^2 O^1: O^1: O^3: O^3'$)bis(pyridine- κN)dizinc]

Q.-Y. Ma, R.-F. Guan and G.-Z. Li

Comment

The title complex $[Zn_2(C_{10}H_7NO_6)_2(C_5H_5N)_2]_n$ (I) was obtained by chance when we were attempting to prepare some porous metal-organic framework materials by the reaction of 4,6-dimethyl-5-nitroisophthalic acid with $Zn(NO_3)_2$. In (I), the repeating unit is a centrosymmetic tetra-carboxylato *O,O*' bridged dimer (Fig. 1) in which each Zn^{II} is five-coordinated by four O atoms from different dianionic 4,6-dimethyl-5-nitroisophthalate ligands [Zn—O, 2.0283 (18)–2.0540 (19) Å] and one N atom from a pyridine molecule [Zn—N, 2.030 (2) Å] in the axial site of a slightly distorted square pyramidal coordination sphere. Each of the Zn atoms has an approximately square-pyramidal environment, with four O atoms in a plane and the pyridine N atom at the apical site. The Zn—Zn separation in the dimer is 2.9750 (6) Å. This dimeric unit is similar to that found in the structure of the tetra-benzoato-bridged but discrete Zn₂ dimer with 4-(dimethylamino)pyridine (Yu *et al.*, 2011). The complex dimers in (I) are extended into a two-dimensional polymer structure through bridges provided by the second carboxylate group of the ligand (Figs. 2, 3).

Experimental

4,6-Dimethyl-5-nitroisophthalic acid (2 mg, 0.0046 mmol) and $Zn(NO_3)_2$ (4 mg, 0.0137 mmol) were dissolved in 1 ml of a mixed DMSO–H₂O solvent (2:1) and 2 drops pyridine were added. This solution was sealed in a Pyrex glass tube and heated to 120° C over a period of 10 h, and then maintained at this temperature for 50 h, after which it was cooled to room temperature over 17 h. Colourless rod crystals were obtained, which were filtered, washed with water and dried in air.

Refinement

All H atoms were placed in calculated positions (C—H = 0.93–0.96 Å) and refined in a riding mode with $U_{iso}(H) = 1.2U_{eq}(C)$. The methyl H atoms are rotationally disordered over six equal half-occupancy sites.

Figures

Fig. 1. The atom numbering scheme for the centrosymmetric dimeric unit in the title compound with displacement ellipsoids drawn at the 30% probability level. Symmetry codes are: (i) -x+1, -y, -z + 1; (ii) -x + 1, y - 1/2, -z - 3/2; (iii) x, -y + 1/2, z + 1/2. The second set of hydrogen atoms on the 50% rotationally-disordered methyl groups (C8 and C9) are omitted.

Fig. 2. The two-dimensional polymeric extension of the title compound viewed down the a axial direction.

Fig. 3. The packed structure of the title compound viewed down the *c* axial direction.

Poly[tetrakis(μ_4 -4,6-dimethyl-5-nitrobenzene-1,3-dicarboxylato- $\kappa^2 O^1: O^1: O^3: O^3$)bis(pyridine- κN)dizinc]

Crystal data

$[Zn(C_{10}H_7NO_6)(C_5H_5N)]$	F(000) = 776
$M_r = 381.64$	$D_{\rm x} = 1.632 \ {\rm Mg \ m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 2968 reflections
a = 10.2947 (9) Å	$\theta = 2.3 - 26.1^{\circ}$
b = 11.8526 (10) Å	$\mu = 1.62 \text{ mm}^{-1}$
c = 12.8501 (11) Å	T = 298 K
$\beta = 97.933 \ (2)^{\circ}$	Rod, colourless
$V = 1553.0 (2) \text{ Å}^3$	$0.12 \times 0.10 \times 0.08 \text{ mm}$
Z = 4	

Data collection

Bruker APEXII CCD area-detector diffractometer	3525 independent reflections
Radiation source: fine-focus sealed tube	2750 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.029$
ϕ and ω scans	$\theta_{\text{max}} = 27.7^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996)	$h = -8 \rightarrow 13$
$T_{\min} = 0.824, T_{\max} = 0.879$	$k = -15 \rightarrow 15$
8899 measured reflections	$l = -16 \rightarrow 16$

Refinement

Refinement on F^2
Least-squares matrix: full
$R[F^2 > 2\sigma(F^2)] = 0.033$
$wR(F^2) = 0.081$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained

<i>S</i> = 1.03	$w = 1/[\sigma^2(F_o^2) + (0.0353P)^2 + 0.6981P]$ where $P = (F_o^2 + 2F_c^2)/3$
3525 reflections	$(\Delta/\sigma)_{\text{max}} = 0.001$
217 parameters	$\Delta \rho_{max} = 0.43 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.43 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{\rm iso}*/U_{\rm eq}$ Occ. (<1) Z х у Zn1 0.63668 (3) -0.03544(2)0.53898(2)0.0233(1)01 0.65410 (19) 0.13708 (16) 0.54695 (18) 0.0546 (8) 02 0.0508 (7) 0.4496 (2) 0.18909 (15) 0.49411 (17) O3 0.55390(18) -0.03094(18)0.67374 (14) 0.0454(7)04 0.6491 (2) -0.02213(19)0.38329 (14) 0.0499(7) O5 0.7497 (2) 0.62087 (19) 0.42547 (16) 0.0600 (8) 06 0.0703 (10) 0.9095(2)0.5865(2)0.5453 (2) N1 0.7959(2) 0.57613 (18) 0.50579 (17) 0.0352(7) N2 -0.07998(17)0.0298 (6) 0.8232(2)0.59645 (16) C1 0.5998(2)0.32743 (18) 0.56737 (17) 0.0245(7) C2 0.6751 (2) 0.51257 (17) 0.0253 (7) 0.39863 (19) C3 0.7112 (2) 0.50127 (19) 0.56086 (18) 0.0258 (7) C4 0.6795 (2) 0.65714 (17) 0.0253 (7) 0.53868 (18) C5 0.5997 (2) 0.46553 (19) 0.70674 (17) 0.0235 (6) C6 0.5600(2) 0.36307 (19) 0.66100 (17) 0.0260(7) C7 0.5647 (3) 0.2080(2)0.53197 (18) 0.0283 (7) C8 0.7134 (3) 0.3664 (2) 0.4076 (2) 0.0382 (9) C9 0.7241 (3) 0.6519(2) 0.7019 (2) 0.0416 (9) C10 0.5618(2) 0.48883 (19) 0.81384 (17) 0.0259(7) C11 0.9056 (3) -0.1198 (3) 0.5336(2) 0.0455 (10) -0.1460 (3) C12 1.0338 (3) 0.5712 (3) 0.0625 (14) C13 -0.1350(3) 0.0739 (15) 1.0764 (3) 0.6760(3) C14 0.9916 (4) -0.0970 (4) 0.7408 (3) 0.0817 (14) C15 0.8655 (3) -0.0695(3)0.6982 (2) 0.0559(11) H6A 0.31680 0.69400 0.0310* 0.50520 H8A 0.67890 0.29300 0.38790 0.0570* 0.500 H8B 0.80720 0.36510 0.0570* 0.500 0.41230 H8C 0.67830 0.42060 0.35570 0.0570* 0.500

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H8D	0.76410	0.42610	0.38270	0.0570*	0.500
H8E	0.63580	0.35410	0.35830	0.0570*	0.500
H8F	0.76460	0.29850	0.41490	0.0570*	0.500
H9A	0.69250	0.66260	0.76810	0.0620*	0.500
H9B	0.69000	0.71040	0.65410	0.0620*	0.500
Н9С	0.81820	0.65490	0.71220	0.0620*	0.500
H9D	0.77470	0.68930	0.65480	0.0620*	0.500
H9E	0.77710	0.64150	0.76880	0.0620*	0.500
H9F	0.64890	0.69700	0.71080	0.0620*	0.500
H11A	0.87570	-0.13000	0.46260	0.0550*	
H12A	1.09060	-0.17090	0.52580	0.0750*	
H13A	1.16230	-0.15320	0.70300	0.0890*	
H14A	1.01850	-0.08980	0.81260	0.0980*	
H15A	0.80810	-0.04270	0.74230	0.0670*	

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.0253 (2)	0.0240 (2)	0.0210(1)	0.0011 (1)	0.0044 (1)	0.0003 (1)
01	0.0406 (12)	0.0231 (10)	0.0991 (18)	0.0015 (9)	0.0057 (12)	-0.0082 (10)
O2	0.0471 (12)	0.0278 (10)	0.0708 (14)	-0.0077 (9)	-0.0156 (10)	-0.0060 (9)
O3	0.0346 (10)	0.0791 (15)	0.0245 (9)	0.0051 (10)	0.0108 (8)	0.0017 (9)
O4	0.0510 (12)	0.0788 (15)	0.0218 (9)	0.0216 (11)	0.0114 (9)	0.0125 (9)
O5	0.0789 (16)	0.0588 (14)	0.0439 (12)	-0.0111 (12)	0.0142 (11)	0.0230 (11)
O6	0.0460 (14)	0.0838 (18)	0.0819 (18)	-0.0243 (13)	0.0113 (13)	0.0200 (15)
N1	0.0456 (14)	0.0298 (11)	0.0338 (12)	-0.0076 (10)	0.0185 (10)	-0.0013 (9)
N2	0.0285 (11)	0.0286 (10)	0.0324 (11)	0.0014 (9)	0.0047 (9)	-0.0001 (9)
C1	0.0281 (12)	0.0225 (11)	0.0229 (11)	-0.0012 (9)	0.0036 (9)	-0.0028 (9)
C2	0.0302 (12)	0.0246 (12)	0.0220 (11)	0.0007 (10)	0.0064 (9)	-0.0024 (9)
C3	0.0298 (13)	0.0227 (11)	0.0261 (12)	-0.0020 (9)	0.0077 (10)	0.0036 (9)
C4	0.0317 (13)	0.0204 (11)	0.0239 (11)	-0.0007 (10)	0.0043 (9)	-0.0005 (9)
C5	0.0278 (12)	0.0243 (11)	0.0189 (10)	0.0017 (10)	0.0047 (9)	-0.0002 (9)
C6	0.0303 (13)	0.0243 (12)	0.0244 (12)	-0.0048 (9)	0.0079 (10)	0.0010 (9)
C7	0.0412 (15)	0.0237 (12)	0.0215 (11)	-0.0049 (11)	0.0100 (10)	-0.0010 (9)
C8	0.0552 (18)	0.0334 (14)	0.0293 (13)	0.0001 (12)	0.0171 (12)	-0.0026 (11)
C9	0.0616 (19)	0.0268 (13)	0.0390 (15)	-0.0123 (13)	0.0160 (14)	-0.0078 (11)
C10	0.0355 (14)	0.0236 (12)	0.0195 (11)	0.0024 (10)	0.0075 (10)	0.0011 (9)
C11	0.0412 (17)	0.0514 (18)	0.0456 (16)	0.0133 (14)	0.0122 (13)	0.0050 (14)
C12	0.0423 (19)	0.066 (2)	0.083 (3)	0.0198 (16)	0.0219 (18)	0.004 (2)
C13	0.0309 (18)	0.073 (3)	0.111 (3)	0.0081 (17)	-0.0148 (19)	-0.020 (2)
C14	0.053 (2)	0.110 (3)	0.071 (2)	0.023 (2)	-0.0308 (19)	-0.039 (2)
C15	0.0443 (18)	0.074 (2)	0.0458 (18)	0.0131 (16)	-0.0064 (14)	-0.0239 (16)

Geometric parameters (Å, °)

Zn1—O1	2.0540 (19)	C5—C10	1.507 (3)
Zn1—O3	2.0336 (18)	C11—C12	1.377 (4)
Zn1—O4	2.0283 (18)	C12—C13	1.364 (5)
Zn1—N2	2.030 (2)	C13—C14	1.363 (5)

Zn1—O2 ⁱ	2.0450 (19)	C14—C15	1.377 (5)
O1—C7	1.242 (3)	С6—Н6А	0.9300
O2—C7	1.238 (4)	C8—H8A	0.9600
O3—C10 ⁱⁱ	1.246 (3)	C8—H8B	0.9600
O4—C10 ⁱⁱⁱ	1.240 (3)	C8—H8C	0.9600
O5—N1	1.199 (3)	C8—H8D	0.9600
O6—N1	1.215 (3)	C8—H8E	0.9600
N1—C3	1.490 (3)	C8—H8F	0.9600
N2—C11	1.336 (4)	С9—Н9А	0.9600
N2—C15	1.326 (3)	С9—Н9В	0.9600
C1—C2	1.400 (3)	С9—Н9С	0.9600
C1—C6	1.389 (3)	C9—H9D	0.9600
C1—C7	1.515 (3)	С9—Н9Е	0.9600
C2—C3	1.393 (3)	С9—Н9F	0.9600
C2—C8	1.506 (3)	C11—H11A	0.9300
C3—C4	1.395 (3)	C12—H12A	0.9300
C4—C5	1.406 (3)	C13—H13A	0.9300
C4—C9	1.507 (3)	C14—H14A	0.9300
C5—C6	1.386 (3)	C15—H15A	0.9300
O1—Zn1—O3	88.59 (9)	N2-C11-C12	121.7 (3)
O1—Zn1—O4	87.41 (9)	C11—C12—C13	119.1 (3)
O1—Zn1—N2	99.73 (8)	C12-C13-C14	119.3 (3)
O1—Zn1—O2 ⁱ	158.34 (8)	C13—C14—C15	118.9 (3)
O3—Zn1—O4	158.24 (8)	N2-C15-C14	122.2 (3)
O3—Zn1—N2	100.58 (8)	С1—С6—Н6А	119.00
$O2^{i}$ —Zn1—O3	88.82 (8)	С5—С6—Н6А	119.00
O4—Zn1—N2	101.18 (8)	C2—C8—H8A	109.00
O2 ⁱ —Zn1—O4	87.07 (9)	C2—C8—H8B	109.00
O2 ⁱ —Zn1—N2	101.89 (8)	С2—С8—Н8С	109.00
Zn1—O1—C7	127.48 (18)	C2—C8—H8D	109.00
Zn1 ⁱ —O2—C7	127.43 (17)	С2—С8—Н8Е	109.00
Zn1—O3—C10 ⁱⁱ	129.39 (16)	C2—C8—H8F	109.00
Zn1—O4—C10 ⁱⁱⁱ	126.61 (17)	H8A—C8—H8B	110.00
O5—N1—O6	124.0 (2)	Н8А—С8—Н8С	109.00
O5—N1—C3	118.9 (2)	H8B—C8—H8C	109.00
O6—N1—C3	117.0 (2)	H8D—C8—H8E	109.00
Zn1—N2—C11	121.32 (17)	H8D—C8—H8F	110.00
Zn1—N2—C15	120.00 (19)	H8E—C8—H8F	109.00
C11—N2—C15	118.7 (2)	С4—С9—Н9А	109.00
C2—C1—C6	120.2 (2)	С4—С9—Н9В	109.00
C2—C1—C7	122.5 (2)	С4—С9—Н9С	110.00
C6—C1—C7	117.2 (2)	C4—C9—H9D	110.00
C1—C2—C3	115.8 (2)	С4—С9—Н9Е	109.00
C1—C2—C8	122.0 (2)	C4—C9—H9F	109.00
C3—C2—C8	122.3 (2)	Н9А—С9—Н9В	109.00
N1—C3—C2	116.51 (19)	Н9А—С9—Н9С	109.00
N1—C3—C4	117.13 (19)	Н9В—С9—Н9С	110.00

supplementary materials

C2—C3—C4	126.3 (2)	Н9Д—С9—Н9Е	109.00
C3—C4—C5	115.4 (2)	H9D—C9—H9F	110.00
C3—C4—C9	121.7 (2)	H9E—C9—H9F	109.00
C5—C4—C9	122.9 (2)	N2—C11—H11A	119.00
C4—C5—C6	120.3 (2)	C12—C11—H11A	119.00
C4—C5—C10	122.8 (2)	C11—C12—H12A	120.00
C6—C5—C10	116.71 (19)	C13—C12—H12A	120.00
C1—C6—C5	121.9 (2)	C12—C13—H13A	120.00
O1—C7—O2	126.0 (2)	C14—C13—H13A	120.00
O1—C7—C1	116.4 (2)	C13—C14—H14A	121.00
O2—C7—C1	117.6 (2)	C15—C14—H14A	121.00
O3 ^{iv} —C10—C5	117.08 (19)	N2—C15—H15A	119.00
O4 ^v —C10—C5	117.53 (19)	C14—C15—H15A	119.00
$O3^{iv}$ —C10—O4 ^v	125.3 (2)		
O3—Zn1—O1—C7	-70.9 (2)	C15—N2—C11—C12	-2.4 (5)
O4—Zn1—O1—C7	87.7 (2)	C11—N2—C15—C14	0.8 (5)
N2—Zn1—O1—C7	-171.4 (2)	Zn1—N2—C11—C12	177.4 (3)
O2 ⁱ —Zn1—O1—C7	12.3 (4)	Zn1—N2—C15—C14	-179.1 (3)
O1—Zn1—O3—C10 ⁱⁱ	82.6 (2)	C2—C1—C6—C5	-4.3 (3)
O4—Zn1—O3—C10 ⁱⁱ	3.2 (4)	C2—C1—C7—O1	74.4 (3)
N2—Zn1—O3—C10 ⁱⁱ	-177.8 (2)	C7—C1—C2—C8	7.3 (3)
O2 ⁱ —Zn1—O3—C10 ⁱⁱ	-75.9 (2)	C7—C1—C6—C5	172.4 (2)
O1—Zn1—O4—C10 ⁱⁱⁱ	-75.2 (2)	C6—C1—C2—C3	3.3 (3)
O3—Zn1—O4—C10 ⁱⁱⁱ	4.4 (4)	C6—C1—C7—O2	75.5 (3)
N2—Zn1—O4—C10 ⁱⁱⁱ	-174.7 (2)	C7—C1—C2—C3	-173.3 (2)
O2 ⁱ —Zn1—O4—C10 ⁱⁱⁱ	83.8 (2)	C6—C1—C2—C8	-176.2 (2)
O1—Zn1—N2—C11	-106.3 (2)	C6-C1-C7-O1	-102.3 (3)
O1—Zn1—N2—C15	73.6 (2)	C2—C1—C7—O2	-107.9 (3)
O3—Zn1—N2—C11	163.4 (2)	C8—C2—C3—C4	179.4 (2)
O3—Zn1—N2—C15	-16.8 (2)	C8—C2—C3—N1	-2.9 (3)
O4—Zn1—N2—C11	-17.0 (2)	C1—C2—C3—C4	0.0 (3)
O4—Zn1—N2—C15	162.8 (2)	C1-C2-C3-N1	177.59 (19)
O2 ⁱ —Zn1—N2—C11	72.3 (2)	N1-C3-C4-C9	2.4 (3)
O2 ⁱ —Zn1—N2—C15	-107.8 (2)	C2—C3—C4—C5	-2.2 (3)
$O1$ — $Zn1$ — $O2^{i}$ — $C7^{i}$	-3.3 (4)	C2—C3—C4—C9	-180.0 (2)
$O3$ —Zn1— $O2^{i}$ — $C7^{i}$	79.9 (2)	N1—C3—C4—C5	-179.84 (19)
$O4$ — $Zn1$ — $O2^{i}$ — $C7^{i}$	-78.7 (2)	C3—C4—C5—C6	1.3 (3)
N2—Zn1—O2 ⁱ —C7 ⁱ	-179.5 (2)	C9—C4—C5—C6	179.0 (2)
Zn1—O1—C7—O2	-11.5 (4)	C3—C4—C5—C10	176.5 (2)
Zn1—O1—C7—C1	166.09 (17)	C9—C4—C5—C10	-5.8 (3)
Zn1 ⁱ —O2—C7—O1	8.2 (4)	C10-C5-C6-C1	-173.6 (2)
Zn1 ⁱ —O2—C7—C1	-169.35 (16)	C4—C5—C10—O3 ^{iv}	138.0 (2)
Zn1—O3—C10 ⁱⁱ —C5 ⁱⁱ	169.14 (16)	C4—C5—C10—O4 ^v	-44.5 (3)
Zn1—O3—C10 ⁱⁱ —O4 ⁱ	-8.1 (4)	C6—C5—C10—O3 ^{iv}	-46.6 (3)

Zn1—O4—C10 ⁱⁱⁱ —O3 ⁱ	-8.2 (4)	C6—C5—C10—O4 ^v	130.9 (2)	
Zn1—O4—C10 ⁱⁱⁱ —C5 ⁱⁱⁱ	169.07 (16)	C4—C5—C6—C1	1.9 (3)	
O6—N1—C3—C2	-108.6 (3)	N2-C11-C12-C13	2.5 (5)	
O5—N1—C3—C4	-111.8 (3)	C11—C12—C13—C14	-0.8 (6)	
O6—N1—C3—C4	69.3 (3)	C12-C13-C14-C15	-0.8 (6)	
O5—N1—C3—C2	70.4 (3)	C13-C14-C15-N2	0.8 (6)	
Symmetry codes: (i) $-x+1$, $-y$, $-z+1$; (ii) $-x+1$, $y-1/2$, $-z+3/2$; (iii) x , $-y+1/2$, $z-1/2$; (iv) $-x+1$, $y+1/2$, $-z+3/2$; (v) x , $-y+1/2$, $z+1/2$.				

Fig. 1

Fig. 3

